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Abstract 

Muscle invasive bladder cancer (MIBC) is a highly heterogeneous and costly disease with 

significant morbidity and mortality. Understanding tumor histopathology leads to tailored 

therapies and improved outcomes. In this study, we employed weakly supervised learning 

and neural architecture search to develop a data-driven scoring system. This system 

aimed to capture prognostic histopathological patterns observed in H&E-stained whole 

slide images. We constructed and externally validated our scoring system using multi-

institutional datasets with 653 whole-slide images. Additionally, we performed survival 

analyses and explored the association between our scoring system and seven 

histopathological features, as well as 126 molecular signatures. Through our analysis, we 

identified two distinct risk groups with varying prognoses, reflecting inherent differences 

in histopathological and molecular subtypes. The adjusted hazard ratio for overall 

mortality was 1.46 (95% CI 1.05-2.02; z: 2.23; p=0.03), indicating the identification of two 

prognostic subgroups in high-grade MIBC. Furthermore, we observed an association 

between our novel digital biomarker and the squamous phenotype, subtypes of miRNA, 

mRNA, long non-coding RNA, DNA hypomethylation, as well as several gene mutations 

including FGFR3 in MIBC. Our findings underscore the risk of confounding bias when 

reducing the complex biological and clinical behavior of tumors to a single mutation. 

Histopathological changes can only be fully captured through the use of comprehensive 

multi-omics profiles. The introduction of our scoring system has the potential to enhance 

daily clinical decision-making for MIBC. It facilitates shared decision-making by offering 

comprehensive and precise risk stratification, treatment planning, and cost-effective 

preselection for expensive molecular characterization. 



INTRODUCTION 

Bladder Cancer (BC) is the tenth most common cancer in the United States, mostly 

affecting people older than 55 years; Bladder cancer (BC) exhibits a gender disparity, 

affecting men approximately four times more frequently than women 1. Furthermore, BC 

encompasses a broad spectrum of disease behavior, ranging from a slow-growing non-

muscle-invasive form (NMIBC) to a highly aggressive muscle-invasive variant (MIBC). 

Although most BC patients are diagnosed with NMIBC, up to 25% of BC are identified as 

MIBC with substantial risk for mortality 2; BCA cases with stage I or II show a 5-year 

relative survival rate of 96% or 70%, respectively, whereas 38 of 100 cases with stage III 

will survive 5 years; cases with stage IV have the poorest survival outcome with 6% of 5-

year relative survival rate. Moreover, BC reveals distinct multilevel molecular subtype 

profiles associated with prognosis and treatment responses 3. However, determining 

multilevel molecular subtype profiles (i.e., protein expression, gene mutation, mRNA, 

DNA methylation, miRNA) requires a complex and expensive infrastructure likely 

unavailable in most cancer centers worldwide. Therefore, a cost-effective solution could 

ideally help to manage the patient selection according to their risk of having progressive 

cancers or to identify cases likely to benefit from certain treatment regimens. 

Recent studies revealed the potential of deep learning (DL) and histology images 

as a new generation of digital biomarkers for prognosis, molecular signature, and 

treatment response in different cancers, including bladder cancer 4,5. While deep learning 

holds immense potential, it is essential to address certain tendencies that have arisen 

within its application. Specifically, a majority of prior research treated confidence scores 

as equivalent to probability scores, disregarding the well-recognized problem of 



overconfidence in deep learning models 6,7. Furthermore, these studies have not provided 

a feasible means of interpreting whether the latent feature spaces reflect alterations in 

histological patterns that contribute to the prediction scores.  

Given the limitations of previous studies, our hypothesis posits that morphometrical 

patterns observed at the histological level are indicative of prognostic confidence scores, 

which are then associated with omics signatures specific to advanced bladder cancers. 

Our primary objective is to identify prognostic subgroups that reveal associations with 

molecular subtypes, utilizing histology images including bladder cancers and weakly 

supervised learning. The major contribution of the current work is to provide a novel 

strategy that facilitates the development of prognostic scores derived from a collection of 

mixed histology patterns associated with molecular subtypes, and potential treatment 

options for bladder cancers. 

 



METHODS 

Survival Modeling 

Data 
Complete data were available for 113 patients diagnosed with urothelial carcinoma 

of the bladder (BC) from the Prostate, Lung, Colon, and Ovarian Cancer Screening 

(PLCO) trial. PLCO is a randomized controlled trial aimed to determine whether certain 

screening exams reduce mortality from prostate, lung, colorectal and ovarian cancer 

(NCT00339495) 8,9. Although this trial did not screen for BC, it tracked diagnoses of BC 

during the trial period. Briefly, 154,900 participants from the general population aged 55 

through 74 years were enrolled between 1993 and 2001 10.  Only subjects without a 

history of prostate, lung, colorectal or ovarian cancer were enrolled. Cancer diagnoses 

were confirmed by retrieving results and information from medical record systems and 

the cancer registry system. This study used a linkage with the National Death Index to 

extend mortality follow-up to a maximum of 19 years after randomization 11. During the 

study follow-up period, 1,430 cases of BC were diagnosed, from which 285 cases were 

randomly selected by the PLCO study organizer to scan representative whole slides with 

samples containing BC. All samples were originally obtained through transurethral 

resection of bladder tumors. 

 After excluding the slide images of cases with missing follow-up information, a 

total of 196 H&E-stained slides of the bladder cancer cohort were available from 9 U.S. 

centers and digitally scanned at 40× objective magnification (one pixel corresponds to 

~0.2532 µm) using a Leica Biosystems device (Wetzlar, Germany) and stored in SVS 

format. 



We split these images as the development set into a training set, optimization set, 

and the validation set by institutions to prevent overlapping between these sets; cases of 

a center having the largest portion in our cohort were selected for the training set, the 

center with the smallest portion was considered for optimization set and the remaining 

centers for the validation set.  

 

Image Preprocessing 

The rectangle boundary of the tissue area was estimated after thresholding the 

gray color version of the thumbnail image (1× magnification) for each image and upscaled 

to correspond to 40× magnification. After that, the tissue area was divided into 

2,048×2,048 pixels (px) tiles, and tiles mostly (>50% of the tile pixels) matching the white 

background colors were excluded. The resulting tiles were downsized to 512×512 px 

(~10× objective magnification). Each tile originated from the same patient and was 

labeled for the binary cancer-specific death status (CSD) in the death certificate. 

 

Model Development 

The current study applied the neural architecture search (NAS) algorithm for 

PlexusNet 12 and the training set to determine the optimal model architecture for CSD 

prediction. Here, we used the grid search and an abstract search space covering the type 

of block (i.e., attention block, ResNet, and inception block), depth (i.e., how often to repeat 

the blocks), and the branching factor (i.e., number of multi branches in the network) of the 

convolutional neural network and the transformer inclusion, resulting in the examination 



of 1,296 models with different architecture configurations. In addition, we applied the 

widely accepted optimization algorithm “ADAM” with the standard hyperparameter 

configuration and the cross-entropy loss function to train each model for one epoch. For 

the NAS, the batch size was set to 64 patches and the learning rate to 1e-3. To optimize 

the computational efficiency of NAS, we employed a downsizing technique from our 

previous work, reducing the patches to a 32×32 pixel dimension 12. This approach allows 

us to focus computational resources on smaller patches, reducing complexity while still 

extracting meaningful information. The downsized patches strike a balance between 

computational efficacy and the ability to explore diverse architectural designs, 

streamlining the NAS process for large-scale experiments and real-world applications 12; 

the two-fold cross-validation was applied to train and evaluate each model for balanced 

classification accuracy. Finally, the final model architecture with the highest average 

performance on 2-fold cross-validation was selected. 

The resulting model was then trained on the whole training set with 512 × 512 px 

patches until convergence. During model training, we set an early-stopping algorithm 

(stop training when the loss values on the optimization setting are not improved for ten 

epochs) to mitigate the model overfitting; Adam with weight decay was applied as 

instructed by the authors for model training while the learning rate was set to 1e-4. The 

binary patch label was randomly smoothed with +/- 0.25 to moderate the model 

overconfidence in addition to model overfitting and to improve the model calibration. The 

image augmentation was applied and included random rotation, flipping, clipping, and 

color space augmentations, as described previously in the image preprocessing section. 

For each epoch, we validated the model performance on the optimization set at the patient 



level. Here, we measured the average confidence scores for CSD on all patches for each 

patient and measured the discriminative accuracy for CSD prediction using a time-

dependent area under the receiver operating characteristic curves (AUROC) and c-index 

at the case level. 

We applied the validation set to validate the case-level model accuracy at the 

patient level and to visualize the feature space of the last convolutional layer (not the 

global pooling) using t-SNE (t-distributed stochastic neighbor embedding). We then 

clustered the feature spaces according to the deciles of CSD prediction to visualize the 

correspondence between CSD prediction and feature space. After that, we determined 

two deciles based on the feature clusters. The first decile cluster (reference decile, r) 

shows a feature space dominant for negative patches, whereas the second decile cluster 

corresponds to the median decile (m). 

After finding deciles r and m, we developed an algorithm to estimate the CSD score 

for each case as follows:  

1) We first calculated the patch frequency for 10 bins with equal width (histogram) 

at the case level. The bin width was calculated for each case using Eq 1.: 

𝑏𝑖𝑛 𝑤𝑖𝑑𝑡ℎ = (𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛)/√10 (1) 

where smax is the maximum CDS score and smin is the minimum CSD score for each case.

  

2) Secondly, we applied the maximum normalization to the patch frequencies, 

including 𝐷𝑟 and 𝐷𝑚  ,to achieve a value range between 0 and 1 for all bins. 



Third, we estimated the unadjusted CSD score (Su) using the following 

equation: 

𝑆𝑢 =  𝐷𝑚 − 𝐷𝑟  (2) 

 

3) Since out-of-distribution data may have different frequency distribution than the 

development set, we introduced the following algorithm to adjust the CSD score 

estimation without having the ground truth: 

a) Calculate the mean µ of Su  

b) Calculate the median μ1/2 of (𝑆𝑢 − 𝜇)  

c) Adjust the scores by µ and μ1/2 according to the equation: 

𝑆𝐶𝑆𝐷 =  −(𝜇 + 𝜇1/2) + 𝐷𝑚 − 𝐷𝑟  (3) 

 

We also applied thresholding to 𝑆𝐶𝑆𝐷 to define a binarized risk category. The 

threshold (T ) was determined using the following equation: 

T = µ0 + 1.05 σ0 + 𝛂 (4) 

where σ0 is the standard deviation of Su; σ0 and µ0 were calculated on development 

set; 𝛂 is the correction factor that counts the difference between µ0 and the mean of out-

of-distribution cohort (µc) and can be expressed as  

𝛂 = µ0 – µc   (5). 



Since the bin range differs from case to case by the CSD score range, we asserted 

that the median for the case-wise midrange of CSD scores for 𝐷𝑟 (MR=0.17; interquartile 

range, IQR: 0.16 – 0.18) and 𝐷𝑚 (MR=0.41; IQR: 0.37 –  0.42) was comparable between 

the development and out-of-the distribution cohort (external validation) to ensure the 

generalization of binning with equal width. 

Evaluation 

Data 

We obtained 457 H&E-stained whole slide images from The Cancer Genome Atlas 

(TCGA) - Urothelial Bladder Carcinoma cohort 13 from which 412 images included survival 

information. This TCGA cohort contains genetic, demographic, and clinical outcomes data 

for various cancers, and this data is made publicly available through their online platform 

(NCI Genomic Data Commons). The TCGA study for bladder cancer has received 

contributions from a total of 36 institutions worldwide. The sources of bladder cancer 

tissue specimens were radical cystectomy (RC) specimens. The slides with bladder 

cancer tissue specimens were digitally scanned at 40× objective magnification (one pixel 

corresponds to ~0.2532 µm on average) using a Leica Biosystems device (Wetzlar, 

Germany) and stored in SVS format. Clinicopathological and follow-up information was 

available at the case level. We also applied the same image preprocessing strategy and 

the scoring system described earlier to this cohort. All images with available molecular 

profiles and clinicopathological and follow-up information were considered. Each case 

corresponded to a single whole slide image. 

Prognosis 

We assessed the prognostic value of our novel risk group using the univariate and 

multivariate Cox proportional hazards models. In multivariate analysis, cancer stage 



grouping and age at diagnosis were added to adjust the hazard ratio for the novel risk 

group. The outcome was the overall survival (OS) from the diagnosis as TCGA dataset 

is highly qualitative and widely used for overall survival analyses in cancer research 14. 

Patients lost to follow-up were censored at the date of the last contact. 

Association with familiar Molecular Signatures of Bladder Cancer 

We evaluated seven histopathologic (e.g., squamous phenotype) and 126 

molecular signatures (e.g., the mutation in FGFR3 and molecular subtypes) investigated 

by the TCGA study 13 in bladder cancers (See the signature list in the supplementary 

section) for their association with the categorized risk score groups. In addition, for any 

significant signatures with more than two categories, we performed post hoc comparison 

analyses to determine which categories significantly differ between the novel two risk 

groups. 

 

Metrics, Statistics and Software 

We applied the time-dependent AUROC at 5th follow-up year 15 and univariate and 

multivariate Cox regression analyses to assess our novel scoring system on the 

development set before the external validation. 

The classification and accuracy of prognosis were quantified with AUROC, Harrel’s 

c-index 16,17. The goodness of fit was measured according to the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC), where the lower the value, the 

better the model fit 18-20. Finally, Kaplan-Meier survival estimates were applied to 

approximate the survival probability for our novel risk classification.  



The chi-square tests were performed to determine whether there is an association 

between categorical variables (n x m contingency tables). In contrast, the Fisher test was 

applied to estimate the odd ratios and assess 2x2 contingency tables. Finally, we used 

the Wilcoxon Rank Sum Test to assess the differences in a numerical variable between 

the novel risk groups. 

The comparison analyses for categorical signatures include repeating the Fisher 

test for each signature category as one-versus-other and the significance determination 

for each comparison test according to Benjamini-Hochberg (B-H) Procedure 21. Here, the 

critical value was calculated for each comparison test after the p-values of comparison 

tests were ranked from low to high. The following equation was used to estimate the 

critical value at a false discovery rate (FDR) of 0.20: 

 

   Critical value = rank/(number of comparisons) * 0·20 (1) 

 

A comparison test is deemed significant according to the last p-value lower than 

its critical value. The Pearson Correlation coefficient estimated the correlation between 

two numerical variables; the Kendall rank correlation coefficient (τ) was estimated to 

measure the ordinal association between one numerical variable and one categorical 

variable or between two categorical variables 22,23. 

Model development and analyses were performed with Keras 2.624, TensorFlow 

2.1025, Python™ 3.8, and the R statistical package system (R Foundation for Statistical 

Computing, Vienna, Austria). All statistical tests were two-sided, and statistical 



significance was set at p ≤0·05 for prognosis or p≤0·10 to consider molecular or 

histopathologic signatures for comparative analyses. 

 



RESULTS  

Survival Modeling 

Table 1 summarizes the cohort description of the development set. We found no 

significant difference in the cohort characteristics between the subsets (i.e., training, 

optimization, and validation sets). We considered the diverse BLC pathologies (not limited 

to muscle invasive bladder cancer) with hope to increase the likelihood of capturing 

differential histopathological patterns by our model for prognosis. In align with the 

literature, 77% of cases of the training set were non-muscle invasive BCa and 

representative of the population . The optimization set was utilized to fine-tune the model, 

enabling it to distinguish between non-lethal patches and lethal patches, while 

considering the various WHO Grades that exhibit heterogeneous patterns. Using a small 

sample size for optimization facilitated the domain expert to manually review the predicted 

patch classes and streamline performance optimization accordingly. The validation set 

had a balanced distribution of NMIBC and MIBC cases, as well as G1/2 and G3 cases, 

thereby minimizing the effect of sampling bias. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: The cohort description of the development set. +Given the study’s history and design, the previous grade 
was available. 

 Training set Optimization 
set 

Validation set  

Characteristic N = 26 N = 6 N = 81 p-value1 

Age at diagnosis in year,  
median (IQR) 

65.0 (62.2 – 
68.8) 

69.0 (65.8 – 
70.0) 

65.0 (61.0 – 
68.0) 

0.50 

Sex, n (%)    0.13 

    Male 25 (96%) 5 (83%) 64 (79%)  

    Female 1 (3.8%) 1 (17%) 17 (21%)  

WHO Grade 1973, n (%)+  0.26 

    G1 5 (19%) 1 (17%) 15 (19%) 
 

    G2 10 (38%) 3 (50%) 15 (19%) 
 

    G3 11 (42%) 2 (33%) 47 (58%) 
 

    Unknown 0 (0%) 0 (0%) 4 (4.9%) 
 

AJCC tumor staging    

T stage, n (%)  0.35 

    Ta 4 (15%) 0 (0%) 1 (1.2%) 
 

    Tis 11 (42%) 5 (83%) 31 (38%) 
 

    T1 5 (19%) 1 (17%) 19 (23%) 
 

    T2 3 (12%) 0 (0%) 22 (27%) 
 

    T3 2 (7.7%) 0 (0%) 4 (4.9%) 
 

    T4 0 (0%) 0 (0%) 1 (1.2%) 
 

    Unknown 1 (3.8%) 0 (0%) 3 (3.7%) 
 

N stage, n (%) 
   

0.46 

    Nx/N0 25 (96%) 6 (100%) 74 (91%) 
 

    N1 0 (0%) 0 (0%) 4 (4.9%) 
 

    Unknown 1 (3.8%) 0 (0%) 3 (3.7%) 
 

M stage, n (%)  0.47 

    Mx/M0 25 (96%) 6 (100%) 75 (93%) 
 

    M1 0 (0%) 0 (0%) 3 (3.7%) 
 

    Unknown 1 (3.8%) 0 (0%) 3 (3.7%) 
 

Follow-up duration in months, 
median (IQR) 

172 (130 – 
201) 

151 (87 – 192) 168 (130 – 197) 0.80 

Cancer-specific death, n (%) 6 (23%) 1 (17%) 25 (31%) 0.60 

Whole slide images, n (%) 46 (23.5%) 8 (4.1%) 142 (72.4%) - 

Patches, n (%) 26,949 (16.5%) 7,574 (4.6%) 129,122 (78.9%) - 
1 Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

 

 

 

 

 



The Neural Architecture Search (NAS) examined 1,296 PlexusNET architecture 

configurations (duration: ~12 hours) 12; NAS suggested a shallow model (model 

configuration: VGG D6L2J1F2 + transformer and global average pooling; these 

parameters regulate the design of the model architecture and the model scaling) having 

only 23,783 parameters and 20 fully connected representation features as the best model 

configuration for cancer-specific death (CSD) prediction. The Levene test indicated that 

there is a significant difference in 18 out of the 20 two-dimensional feature maps between 

the patches derived from patients who died due to bladder cancer and those who 

survived. In other words, the feature maps were found to be unequal or dissimilar between 

the two groups, indicating extraction of significant feature representation for CSD from 

histology images (Fig. 1).  

Following the instruction provided in Material and Method section to derive a risk 

score from histology images, we visualized the feature space and determined the feature 

subspaces using the prediction deciles. The t-SNE visualization of the feature space 

showed that the prediction deciles sorted feature points, and the evaluation of the 

corresponding patch images confirmed the differences in histopathology appearance 

according to the deciles (Fig. 2). Therefore, based on the t-SNE feature visualization and 

the assessment of the histopathology appearance, the second decile (D2) and the fifth 

decile (D5) met the selection criteria described in the material land method section. 

At the patient level, the risk score was prognostic for cancer-specific mortality (HR: 

8.0; 95% CI: 1.4 – 46.1; z: 2.332; p=0.0197). The 5-year AUC was 0.772+/-0.04. The 

multivariate Cox regression analysis further strengthened the independent prognostic 

significance of our novel risk score, even after adjusting for age at diagnosis and tumor 



grade. The inclusion of tumor grade in the analysis offered an alternative approach for 

assessing histopathological characteristics, distinct from our own methodology (Table 2). 

The Kaplan-Meier Curve revealed that the risk score (categorized) delivered two 

distinctive risk groups (p=0.014), as shown in Fig. 3. The median survival for the high-

risk group was achieved between 204 (17 years) and 216 months (18 years) after the 

initial diagnosis. 



 

Fig. 1 lists the density histograms for the last 8x8 two-dimensional feature maps (pixels) according to the cancer-
specific death status at the pixel level (i.e., pixel values) on 25,000 patches from the validation set. A size of 1x1 pixel 
on a feature map corresponds to an area with 64x64 pixels on the corresponding patch image (512x512 pixels). The 
Levene test was applied to assess the equality of variance between cancer survivors and cancer-specific death 
patches. We identified that some features (e.g., F13, F14, F15, F16, or F20) revealed histogram ranges for pixel values 
of specific feature maps more common in cancer-specific death patches (red areas). 

 

 

 



 

Fig. 2 summarizes the t-SNE visualization of penultimate features intuitively sorted by the deciles of the model inference 
scores (predications aka confidence) on representative 25,000 patch images randomly selected from the validation set. 
These patches represent the entire cases (n=81) of the validation set. The corresponding patches were evaluated and 
identified to be altered by the prediction deciles. Based on the data evaluation and the domain knowledge, we selected 
the second decile and 5th decile; the second decile (orange color) was associated with negative patches (>50%) 
dominantly, including bladder cancer; the fifth decile (lilac color) was the center decile between the first and the ninth 
decile (the tenth decile was not considered due to its negligible sample size). A. the 3D feature visualization; B. the 2D 
visualization of features stratified by prediction deciles; C. the 2D visualization of features stratified by the cancer-
specific death status. 

 

 

 

 

 

 



 

Table 2: The multivariate Cox regression analysis for cancer-specific mortality. HR: Hazard ratio; CI: Confidence 

Interval. Grading on the PLCO validation set. Due to the PLCO study design, only the WHO 1973 grading was available. 
Nonetheless, it is important to emphasize that WHO grading is a well-established prognostic parameter, lending 
significance to its inclusion in our analysis. 

 

Variable  HR  95% CI  z  p  

age at diagnosis 1.03  (0.96 – 1.11)  0.87  0.39  

Grading (WHO 1973)  

     G1 (ref)  –  –  –  –  

     G2 2.21  (0.20 – 24.48)  0.64  0.52  

     G3  11.99  (1.61 – 89.21)  2.43  0.02  

     Unknown 11.72  (1.03 – 133.02)  1.99  0.05  

Risk score  8.39  (1.53 – 46.12)  2.45  0.01  

 

 

 

Fig. 3: The Kaplan-Meier curve for cancer-specific survival stratified by the categorized risk scores (Low-risk vs. 
High-risk) on the PLCO validation cohort. 



Prognosis for Muscle-Invasive Bladder Cancer 

Table 3 summarizes the cohort description of the external validation set. The vast 

majority of cases included high-grade MIBC. The distribution of the risk scores around 

the cohort-specific threshold (T=0) is shown in Fig. 4. The categorization of the risk score 

was driven by the dominance of either D2 or D5 in each case, and D2 and D5 were 

associated with distinct histopathologic patterns of bladder cancers in the TCGA cohort 

(Fig. 5). 

We found that the risk groups are prognostic for overall survival on the external 

validation set (HR: 1.46; 95% CI: 1.05 – 2.02; z: 2.23; p=0.03). The multivariate Cox 

regression analysis showed that risk groups are, in addition to the pathologic stage and 

age at diagnosis, independent prognosticators for overall survival as well (Table 4). 

The Kaplan-Meier curve and the log-rank test indicate that the risk groups were 

statistically distinct (p=0.037), as shown in Fig. 6. Both risk groups reached the median 

overall survival, but at different time points (~ 30 months for high-risk vs. ~60 months for 

low-risk); the high-risk group reached the median survival ~2.5 years earlier than the low-

risk group for muscle-invasive bladder cancers. Fig. 7 provides the Kaplan-Meier curve 

for the stages of bladder cancer for comparison. 

 

 

 

 

 



Table 3: The cohort description of the external validation set. 

Characteristic N = 4121 

Age at diagnosis in years, median (IQR) 68 (60 – 76) 

Sex, n (%) 
 

    Female 107 (26%) 

    Male 305 (74%) 

pM 
 

    M0/x 398 (97%) 

    M1 11 (2·7%) 

    Unknown 3 (0·7%) 

pN 
 

    N0x 282 (68%) 

    M1 123 (30%) 

   Unknown 7 (1·7%) 

pT 
 

    T1 2 (0·5%) 

    T2 112 (27%) 

    T3 190 (46%) 

    T4 54 (13%) 

    Unknown 54 (13%) 

Grade, n (%) 
 

    Unknown 1 (0·2%) 

    High Grade 390 (95%) 

    Low Grade 21 (5·1%) 

History of non-muscle invasive bladder cancer, n (%) 
 

    Unknown 127 (31%) 

    NO 227 (55%) 

    YES 58 (14%) 

Bladder cancer pathologic stage, n (%) 
 

    I-II 151 (36·7%) 

    III 130 (31·6%) 

    IV 130 (31·6%) 

    Unknown 1 (0·2%) 

Death, n (%) 185 (45%) 

Follow-up duration in month, median (IQR) 19 (12 – 33) 



 
Fig. 4: The distribution of the case risk scores is determined by D2 and D5, which are the relative frequencies of patches 
for the second and fifth deciles of the prediction for each case. The frequency corresponds to the case number. The 
cohort-specific threshold was estimated to be 0 for the TCGA dataset. Thresholding the risk scores results in two risk 
groups, where D2 and the high-risk group by D5 dominate the low-risk group. Fig. 5 illustrates the histopathologic 
patterns associated with D2 and D5. 

 



 

Fig.5 exemplifies the distinct histopathologic patterns for D2 and D5 on the TCGA cohort. The absolute difference in 
the proportions between D2 and D5 in histology images determines whether the case is assigned to a low or high-risk 
group (Fig. 4). A negligible small fraction of patches in D2 solely included arteria vessels as luminal structures. 
 



Table 4: Multivariate Cox regression analysis for overall mortality. HR: Hazard ratio, CI: Confidence Interval. The AJCC 
pathologic tumor stage is a result of combining the subcategories of the TNM classification. We excluded the tumor 
grade as the muscle invasive bladder cancers are typically high-grade and 95% of tumor grades in our cohort has high 
grade BCa. 

Variable HR 95% CI z P 

High vs. Low-risk 
group 

1.35 (1.01 – 
1.80) 

1.99 0.0462 

Age at diagnosis 1.02 (1.00 – 
1.03) 

2.32 0.0201 

AJCC pathologic 
tumor stage 

    

     I/II (ref) – – – – 

     III 1.51 (1.03 – 
2.21) 

2.10 0.0357 

     IV 2.21 (1.54 – 
3.18) 

4.30 
<0.0001 

 



 
Fig. 6: The Kaplan-Meier curve for overall survival stratified by the categorized risk scores (Low-risk vs. High-risk) on 
the external validation set (TCGA cohort). P value was estimated using the log Rank test. 

 



 
Fig. 7: The Kaplan-Meier curve for overall survival stratified by the AJCC pathologic stages of bladder cancer on the 
external validation set (the TCGA Cohort). This staging system combines the subcategories of the TNM classification. 
P value was estimated using the log Rank test. The single case with unknown stage information was not visualized. 

 



Association with Molecular Signatures of Bladder Cancer 

We identified molecular and pathologic signatures significantly associated with the 

risk groups at case level, as shown in Table 5. Specifically, the TCGA clusters for miRNA, 

mRNA, lncRNA, and DNA methylation were associated with our novel risk groups. In 

addition, multiple mutations, including TSC1, FGFR3, and ERBB3, occurred differently 

between the novel risk groups. 

 
Table 5 summarizes the analysis of signatures and features associated with the risk group. P-values for a signature 
were estimated using Chi-Squared tests.   

Signature p value features associated with  

⬇︎ low risk or ⬆ high risk group 

microRNA cluster 0.003998001 ⬇︎ Cluster 3 

⬆ Cluster 1 

mutation in TSC1 0.006496752 ⬇︎ TSC1 mutation 

mRNA cluster 0.009995002 ⬇︎ Luminal papillary 

⬆ Basal/Squamous 

⬆ Neuronal 

mutation in FGFR3 0.010994503 ⬇︎ FGFR3 mutation 

lncRNA cluster 0.012493753 ⬇︎ Cluster 3 

⬆ Cluster 4 

mutation in ERBB3 0.016991504 ⬇︎ ERBB3 mutation 

mutation in FAT1 0.023488256 ⬇︎ FAT1mutation 

mutation in PIK3CA 0.028485757 ⬇︎ PIK3CA mutation 

mutation in KANSL1 0.033983008 ⬆ KANSL1 mutation 

mutation in TMCO4 0.038480760 ⬇︎ TMCO4 mutation 

mutation in KDM6A 0.044977511 ⬇︎ KDM6A mutation 

mutation in METTL3 0.057971014 ⬇︎ METL3 mutation 

Squamous pathology 0.066466767 ⬆ Squamous histopathology 

mutation in PSIP1 0.075462269 ⬇︎ PSIP1 mutation 

mutation in ZNF773 0.092453773 ⬇︎ ZNF773 mutation 

Hypomethylation cluster 0.092953523 ⬇︎ Cluster 4 

⬆ Cluster 2 

mutation in GNA13 0.093953023 ⬇︎ GNA13 mutation 

 

 

 

The luminal papillary cluster was associated with the low-risk group, whereas the 

basal/squamous cluster and the neuronal cluster were associated with the high-risk 

group. Moreover, cluster 2 for DNA hypomethylation is associated with the high-risk 

group; in contrast, cluster 4, with lesser DNA hypomethylation than cluster 2, was 



associated with the low-risk group. At the long non-coding RNA level, cluster 3 was 

frequently seen in the low-risk group and cluster 4 in the high-risk group. At the miRNA 

level, cluster 3 was more frequent in the low-risk group, and cluster 4 was common in the 

high-risk group. 

 
 

 
Table 6: The distribution of molecular clusters for mRNA, lncRNA, miRNA, and DNA hypomethylation.  

Risk groups Molecular signatures 

mRNA 

 Luminal papillary Basal/Squamous/ Neuronal 

Low risk 85 (59%) 56 (36%) 

High-risk 58 (41%) 101 (64%) 

lncRNA 

 Cluster 3 Cluster 4 

Low risk 47 (64%) 61 (41%) 

High-risk 26 (36%) 87 (59%) 

miRNA 

 Cluster 3 Cluster 1 

Low risk 77 (62%) 30 (39%) 

High-risk 47 (38%) 47 (61%) 

DNA hypomethylation  

 Cluster 4 Cluster 2 

Low risk 23 (68%) 27 (39%) 

High-risk 11 (32%) 42 (61%) 

 
 
 

The low-risk group included 72% of the TSC1 mutation (28 of 39 TSC1 mutations) 

or 67% of the ERBB3 mutation (30 of 45 ERBB3 mutations) in bladder cancer (Tables 7 

and 8). The odd ratio of TSC1 mutation was 0.36 (95% CI: 0.15 – 0.76; p=0.004), and the 

odd ratio of ERBB3 was 0.46 (95% CI: 0.22 – 0.91; p=0.0179) for high-risk groups. 

The true positive rate of our low-risk group was 65% for FGFR3 mutations (Table 

9) with an AUC of 0.593 (95% CI: 0.55-0.69). The odd ratio for FGFR3 mutation in the 

high-risk group was 0.49 (95% CI, 0.27 – 0.87; p=0.0102). The high-risk group included 

63.3% of squamous pathology. The supplementary section provides different results for 

significant signatures.  



Table 7: The distribution of TSC1 mutation between the risk groups.  

 TSC1 gene 

Risk groups wild type mutated 

Low risk 177 (47%) 28 (72%) 

High-risk 196 (53%) 11 (28%) 

 
Table 8: The distribution of ERBB3 mutation between the risk groups.  

 ERBB3 gene 

Risk groups wild type mutated 

Low risk 175 (48%) 30 (67%) 

High-risk 192 (52%) 15 (33%) 

 
 
Table 9: The distribution of FGFR mutation between the risk groups.  

 FGFR3 gene 

Risk groups wild type mutated  

Low risk 163 (47%) 42 (65%) 

High-risk 184 (53%) 23 (35%) 

 



DISCUSSION 

In this study, we developed and externally validated an AI-based algorithm that 

stratifies muscle-invasive bladder cancer by the cancer-specific mortality risk directly from 

histology images. Moreover, our novel risk groups can reveal which histopathological 

pattern is dominant in tissues with bladder cancers. Our approach is feasible thanks to 

the intuitively well-sorted feature space generated by our novel model with weak 

supervision (weakly supervised learning). Such property has facilitated dissecting the 

feature space into small segments to evaluate the histopathological patterns for each 

prediction decile. Furthermore, the decile-wise histopathological patterns further facilitate 

an interpretable AI-based risk-scoring system for bladder cancer (i.e., we can interpret 

the scores as the dominance of histopathological patterns). 

 

Earlier studies in bladder cancer applied deep learning to infer staging 26, grade 

27,28, recurrence risk 29, FGFR3 mutation 30, and specific molecular subtypes 31 from 

histology images. The current study found that prognostic histopathological patterns for 

bladder cancer are rather associated with multi-omics profiles (i.e., transcriptomic, 

genomics, and epigenomics); these multi-omics profiles are already covering the specific 

molecular subtypes and the FGFR3 mutations investigated earlier, and we have shown 

that the accuracy of our risk groups for FGFR3 mutation is similar to the previous report, 

signifying the impact of multi-omics profiles as confounding factors on the results of earlier 

studies. In support of our findings, the BLCA-TCGA study (molecular characterization of 

bladder cancer) revealed that the molecular subtypes and signatures are linked with each 

other and distinct histopathologic patterns (e.g., papillary, basal/squamous) were 



connected with omics profiles that are prognostic and have different therapeutic targets 

3,13. A comparable study in Lung cancer reported that omics features are predictive of 

histology patterns as well 32. 

Although multiple studies identified the detection potential of single mutations or 

specific molecular subtypes from histology images 33-37, the histopathological appearance 

is mainly driven by a collection of multifaceted molecular modulations and reflects the 

cancer malignancy and survival. Subsequently, establishing a direct association between 

a single molecular signature and histology images must be inadequate, given other 

confounders for bladder cancers. 

Our novel risk groups are linked with therapeutic targets like FGFR3 (Erdafitinib) 

38, ERBB3 (Afatinib) 39, PI(3)K (LY294002, other mTOR inhibitors) 40,41, and TSC1 (nab-

sirolimus, study no.: NCT05103358) 3 as well as with female gender-biased gene 

mutation like KDM6A mutation (a histone lysine demethylase) 42. Accordingly, our novel 

risk group holds a potential clinical utility in pre-screening for mono and combinational 

target therapies (Fig. 8). This potential will be more evident once prospective randomized 

studies to validate the clinical utility of our approach for patient selection in the real-world 

clinical setting are available. 

An in-depth look at the multi-omics profiles linked to our risk groups reveals distinct 

molecular regularization profiles at microRNA, lncRNA, and DNA methylation levels. We 

found that the low-risk group is linked with molecular subtypes with good survival for 

coding and non-coding RNAs or DNA methylation. These multi-omics subtypes are 

associated with papillary tumors, high FGFR3 mutations, and miR-200 levels, low 

Epithelial-Mesenchymal Transition (EMT) scores, CD274 (PD-L1) and PDCD1 (PD-1) 



level 13. In contrast, the high-risk group is linked with molecular subtypes with poor 

survival for coding and non-coding RNA, which are further associated with lymphocyte 

infiltration, high expression of CIS (carcinoma in situ) signature genes,  CD274 (PD-L1) 

and PDCD1 (PD-1) levels, high TP53 mutations and EMT scores 13. The high-risk group 

is additionally linked to cluster 2 for DNA hypomethylation which has more DNA 

hypermethylation signals (more gene inactivation) than cluster 4 linked with the low-risk 

group 13. Our data further facilitates deriving a hypothesis that the low-risk group with 

favorable multi-omics profiles is likely more responsive to different targeted therapies than 

the high-risk group, and the high-risk group may benefit from immune checkpoint 

inhibitors (i.e., anti-PD-1 or PD-L1); our data also suggest that epigenetic therapy could 

be a potential therapeutic option for our high-risk group. Fig. 8 summarizes each risk 

group's molecular characteristics and potential treatment options. 

 

 



 

Fig. 8 provides an overview of each risk group's molecular characteristics and proposed treatment options. CIS: 
Carcinoma in situ; NAS: neoadjuvant chemotherapy; EMT: Epithelial-Mesenchymal Transition. The information are 
based on the TCGA-BLCA studies that investigated the treatment responses of main molecular subtypes (i.e., luminal, 
basal, squamous, and neural subtypes). We emphasize that this overview is abstract and not comprehensive and aims 
to generate hypotheses for potential treatment options for each risk group and the overview covers only the common 
main molecular subtypes (e.g., luminal, basal) for each risk group. The molecular features for these subtypes are 
already investigated by TCGA-BLCA studies. 
 

 

Comparable studies utilized activation maps or tiles with top scores to interpret the 

model inference. However, the trustworthiness of activation maps could be more 

questionable as deep neural network classifiers have an opportunistic nature and the 

existing saliency methods inherit a high risk for misinterpretation, limited reproducibility, 

and sparse visualization 43,44. Moreover, considering tiles with top scores ignores the 

variance in histology patterns between two categories after thresholding predictions, as 

evident by our data on the correlation between histology patterns and prediction deciles. 



We applied the neural architecture search to achieve a data-driven architecture 

design with a better trade-off between accuracy, interpretability, and model complexity. In 

our study, only 20 feature representations (i.e., the 2D feature maps of the last 

convolutional layer) are sufficient to derive accurate predictions from histology images 

and correspond, for example, to 4% of feature representations of ResNet18 45 (i.e., 512 

features), an off-the-shelf model commonly used in medical imaging research. Reducing 

the feature representation is associated with a better computation cost for downstream 

analysis and improved human interpretation of these features. Moreover, our approach 

helps visualize and analyze three-dimensional representative features that preserve 

topological information at reasonable computation costs (e.g., analysis of 8,000,000 data 

points required ~30 minutes using parallel computing). In contrast, comparable studies 

that utilized off-the-shelf models are limited by extremely reduced feature granularity (1D) 

with loss of topological information for downstream analysis, given the high computation 

cost to analyze a large number of 3D representative features that these models have. 

Accordingly, comparable studies excluded the most information from the feature 

representation to conduct downstream analysis. In contrast, our approach preserves the 

high granularity of the feature representation for downstream analysis and consequently 

improves the interpretability of our AI model. 

Despite the strengths of our study, it is essential to acknowledge certain limitations. 

Firstly, the utilization of slide images introduces potential variability in image quality due 

to factors such as diverse scanning technologies, staining variations, and image artifacts. 

These variations can introduce inconsistencies that may impact the accuracy and 

reliability of image analysis and interpretation. Nevertheless, we took measures to 



mitigate this concern by using PlexusNET to address the domain shift 12, conducting a 

comprehensive manual review involving domain experts and validating our findings on 

multicentric datasets. Additionally, we employed feature visualization techniques to 

identify the potential impact of artifacts and reviewed for the staining variations on the 

selected histological patterns. Secondly, it is crucial to recognize that TCGA slide images 

offer a glimpse of a specific tumor region or patient sample, which may not fully capture 

the complex intra- and inter-tumor heterogeneity. Tumors can exhibit spatial and 

molecular heterogeneity, resulting in significant variations between different regions 

within the same tumor or among tumors of the same type. Analyzing only a subset of slide 

images may provide an incomplete representation of tumor characteristics. Nonetheless, 

it is noteworthy that the TCGA and PLCO study followed good research practices, aiming 

to select the most representative samples from each patient according to the existing 

technical feasibility. Moreover, the quality of survival data of TCGA was validated for 

overall survival analyses 14. The good research practices and the data quality help 

mitigate this limitation to some extent. It is important to emphasize that TCGA slide 

images, obtained through the TCGA project, do not directly correspond to the specific 

sampling areas used for molecular examination. These images are prepared using 

Hematoxylin and Eosin (HE) staining, a common technique for histological analysis. In 

contrast, molecular examinations and profiling involve separate samples or portions of 

the tumor that undergo different processing steps. TCGA employs distinct protocols for 

various analyses, including genomic, transcriptomic, and proteomic profiling, which are 

not directly applied to the same tissue sections used for generating slide images. These 

protocols often utilize specialized techniques, such as DNA sequencing or protein 



expression analysis, requiring separate tissue preparation and processing. Hence, it is 

crucial to note that TCGA slide images, while providing valuable histological information, 

do not directly correlate with the specific regions of the tumor that underwent molecular 

examination. Rather, they serve as representative snapshots of the tumor's morphology 

and architecture, offering valuable context for researchers analyzing the genomic and 

molecular data obtained from the TCGA project. We preferred slide images with formalin-

fixed paraffin-embedded (FFPE) tissues as this approach offers standardized staining 

and more reliable histology images. In contrast, the process of preparing and staining 

frozen tissue slides are demanding and often result in associated artifacts; freezing can 

cause structural changes and cellular damage, while its staining consistency can be 

challenging due to variations in tissue quality and protocols 46-48. Finally, histology images 

from frozen sections are also snapshots, contrary to a common misconception that 

assumes these images are direct complement to the entire TCGA samples. 

The current study introduces a novel AI-based risk grouping system for survival 

derived from bladder cancer H&E slides. We show the linkage between our risk groups 

and multi-omics profiles for muscle-invasive bladder cancers. We highlight the concerns 

with predicting single molecular signatures (e.g., FGFR3) from histology images. Future 

efforts will focus on validating our approach for the clinical utility to optimize the treatment 

management for bladder cancer. 
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