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Abstract 

Besides grading, deep learning could improve expert consensus to predict prostate cancer (PCa) recurrence. 

We developed a novel PCa recurrence prediction system based on artificial intelligence (AI).  We validated 

it using multi-institutional and international datasets comprising 2,647 PCa patients with at least a 10-year 

follow-up. Survival analyses were performed and goodness-of-fit of multivariate models was evaluated 

using partial likelihood ratio tests, Akaike’s test, or Bayesian information criteria to determine the 

superiority of our system over existing grading systems. Comprehensive survival analyses demonstrated 

the effectiveness of our AI- system in categorizing PCa into four distinct risk groups. The system was 

independent and superior to the existing five grade groups for malignancies. A high consensus level was 

observed among five blinded genitourinary pathology experts in ranking images according to our prediction 

system. Therefore, AI may help develop an accurate and clinically interpretable PCa recurrence prediction 

system, facilitating informed decision-making for PCa patients.



Introduction 

Prostate cancer (PCa) is one of the most prevalent malignant diseases in males and exhibits diverse cancer 

aggressiveness and prognosis1. When PCa is diagnosed, usually by biopsy, the pathological examination of 

cancer differentiation and dissemination status are key determinants for selecting appropriate treatments2. 

Currently, pathologists grade PCa malignancy based on the modified Gleason grading system, originally 

established in the 1960s3. The first version of the Gleason grading system was based on five tissue patterns 

(labeled 1–5) that identified different transformation conditions of prostatic tissues according to tissue 

architecture, growth, and glandular features3,4. This grading system produces a score that considers two 

identical or different patterns to grade PCa differentiation, and the order in which patterns are added differs 

according to tissue sampling (biopsy core vs. whole prostate)3,4. PCa grading was further refined after 

patterns 1 and 2 were mostly identified as benign with the identification of basal cells by 

immunohistochemistry, and some of those patterns 1 and 2 were reclassified as Gleason pattern 3 as well5,6. 

In 2016, Epstein et al. proposed a modified version of the Gleason grading system that included five grade 

groups (GGs) instead of nine different Gleason scores (such as 3 + 3, 4 + 3, and 5 + 3) to achieve a more 

concise prognostic stratification according to biochemical recurrence (BCR) rates7. 

 

Despite strong prognostic capacities and continual revisions since its introduction8, GG reproducibility has 

remained limited because of interobserver variability in grading and quantification, leading to grade 

inconsistency even among expert pathologists, thus increasing the potential risk of treatment delay or 

suboptimal treatment choice9,10. Contemporary studies have highlighted the great potential of artificial 

intelligence (AI) in improving GG consistency and achieving accuracy comparable to expert levels11-13. 

However, these studies likely inherited the limitations of the current grading system as the histological 

ground truth is based on evaluations from a small group of expert pathologists, which is not necessarily 

reflective of the global pathology community (social and cognitive biases) or grading correctness14. 



To bypass these reproducibility limitations, we applied AI to develop a novel recurrence prediction system 

based on long-term PCa prognosis instead of interobserver-based histology. We relied on the tissue 

microarray (TMA) framework of the Canadian Prostate Cancer Biomarker Network (CPCBN) initiative of 

the Terry Fox Research Institute; this initiative implemented thoroughly validated techniques to ensure the 

collection of representative samples of PCa from radical prostatectomy (RP) specimens15. 

In this study, we developed a calibrated and interpretable algorithm for predicting PCa outcomes in multiple 

independent cohorts that could eventually be integrated into existing prognostic and predictive nomograms. 



Results 

Survival Modeling 

To establish a novel system for predicting recurrence, we initially investigated a multicenter population 

(CPBCN, n = 1,489) in which the overall BCR probability was 33.1% (n = 493). The median time to BCR 

events was 26 (interquartile range [IQR], 8–52) months; in contrast, the median follow-up was 109 (76–

141) months in patients without BCR events. The development and first external validation sets (CPBCN 

cohort) were not statistically different with respect to pathological tumor (pT) stage, pathological nodal 

(pN) status, and GG (Supplementary Table S1). Among 600 patients in the development set, 225 (37.5%) 

experienced recurrence during follow-up (median follow-up, 91 [42–123] months); in contrast, among 889 

patients in the first external validation set, 268 (30.1%) had BCR (median follow-up, 75 [43–116] months). 

Fig. 1 summarizes the study methodology using histology images as data input, the confidence scores for 

BCR as output, and the binarized recurrence status as the ground truth for model development and 

evaluation. The Supplementary Materials include cohort descriptions for all datasets included in this study 

(Supplementary Tables S1-S3). 

 

In the first external validation set, the BCR model demonstrated a c-index of 0.682 ± 0.018 and a 

generalized concordance probability of 0.927 (95% CI: 0.891–0.952). The AUROC for the BCR model was 

0.714 (95% CI: 0.673–0.752). Using a cutoff of 0.5 for the BCR confidence score, the sensitivity was 50.0% 

and the specificity was 83.2%. The precision and recall of the BCR model at a 0.5 threshold were 56.3% 

and 50.0%, respectively. The calibration plot demonstrated good correlation between the predicted BCR 

probability (BCR score) and observed 10-year BCR-free survival rate (Supplementary Fig. 1). 

 

Our novel model revealed a better effect size (hazard ratio) and higher generalized concordance probability 

than the classical models ResNet16, VGG-1617, and EfficientNet18, which were trained on the same 

development set for BCR prognosis. EfficientNet and the novel model provided the lowest AIC and BIC. 



A non-nested partial likelihood ratio test revealed that EfficientNet did not fit better than the novel model. 

Importantly, our novel BCR model had between 8- and 32-times fewer feature maps in the last 

convolutional layer for BCR prediction (before being fully connected) and a parameter capacity 125, 54-, 

or 24-times smaller than the models mentioned above (Supplementary Table S4). We observed no 

performance benefits from using image patches at 20× or 40× object magnifications, the attention 

aggregation layer, or the Cox deep convolutional model concept (Supplementary Table S5). 

 

 

 

Fig. 1: Slides from tissue microarrays (TMAs) with prostates samples from five sites were scanned, and the tissue regions 
were marked and extracted using QuPath (i.e., TMA slide image). We then tiled each TMA core image into patches labeled 
by biochemical recurrence (BCR) status to develop our BCR model. We estimated the average BCR scores for each patient 
and applied survival modeling to introduce our novel risk-based grading for prostate cancer. The development set consisted 
of 600 patients, whereas the international external validation sets included three radical prostatectomy cohorts (CPCBN, 
PROCURE, and PLCO). The cohort description for all data sets included in this study can be obtained from Supplementary 
Tables S1-S3. PLCO: The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial.  The endpoints we are 
shown in the black box. CSS: Cancer-specific survival. We emphasize that PC regions were manually demarcated on whole 
slide images following the instruction given by a senior pathologist. 

 

 



The results of the CHAID analysis are shown in Supplementary Fig. S2. Based on the BCR scores estimated 

by our model and CHAID, BCR scores ≤5% were considered low risk, BCR scores between 6% and 42% 

were low intermediate, BCR scores between 43% and 74% were high intermediate, and BCR scores ≥75% 

were high risk. 

 

Recurrence-free Survival 

One study conducted univariate and multivariable Cox regression analyses on CPCBN and PROCURE 

cohorts to assess the prognostic value of the novel risk classification system for PCa recurrence 

(Supplementary Table S6 and S7). The results showed that the BCR score was an independent prognostic 

factor for recurrence, along with PSA level, tumor stage, GG, and surgical margin status. The novel risk 

classification system showed a better model fit and superiority over GG (Table 1). No significant 

multicollinearity between variables was identified (VIF <2), indicating the correlation between variables 

(GG and the novel risk group) is negligible small.  

 

The survival rates varied across the novel risk groups in both the cohorts, as shown in and Figures 2A-B 

(See supplementary Table S8 for 3-, 5-, 10-years BCR-free survival rates). The survival rates for GG are 

shown in the Supplementary section for comparison (Supplementary Tables S9 and S10 and Figs. S3 and 

S4). The estimated power for BCR survival analysis in this study was determined to be ≥99% at an alpha 

level of 5% for each cohort. 

 

 

 

 

 

 

 



Table 1: The model reduction and the partial Likelihood Ratio (LR ) test revealed that a baseline model with the novel risk 
groups is statistically comparable to the full model to predict cancer-specific survival. In constrast, GG (Gleason score/ISUP 
grade groups) was not comparable to the full model. Akaike information criterion (AIC) and Bayesian information criterion 
(BIC) support this finding as well since the fit of a baseline model with the novel risk groups is better than the fit of a 
baseline model with GG. pT: pathologic tumor stage; pN: pathologic nodal stage. + pN was excluded due to non-signficance 
to prognose cancer-specific survival in the CPCBN external validation set. The best performing models are highlighted in 
bold. Higher AIC and BIC are associated with the worst model fitness. No significant multicollinearity between variables 
was identified (the Variance Inflation Factors,VIF, were below 2). 

Model 

Nested partial Likelihood Ratio 

Test, LR (p-value) AIC BIC 

1st external validation set (CPCBN) 

Baseline model + risk group + GG Reference (full model) 167.5161 169.6403 

Baseline model + risk group 1.560 (0.213) 167.07 168.4861 

Baseline model + GG 4.114 (0.036) 169.6098 171.0259 

Baseline model (pT) 7.557 (0.027) 171.0623 171.7703 

2nd external validation set (PROCURE) 

Baseline model + risk group + GG Reference (full model) 170.6459 174.824 

Baseline model + risk group 4.094 (1.2e-1) 172.7398 175.8733 

Baseline model + GG 10.056 (1.8e-3) 178.7017 181.8353 

Baseline model (pT + pN) 27.777 (6.8e-5) 194.4228 196.5119 

 
 



 
Fig. 2A: Kaplan-Meier curves of biochemical recurrence (BCR)-free survival according to BCR score risk stratification in 
the first external Validation set (CPCBN, Canada). P-value was measured using the log-rank test. Blue represents the low-
risk group (0-5% BCR score), yellow represents the low-intermediate risk group (6-42%), grey represents the high-
intermediate risk group (43-74%), and red represents the high-risk group (75-100%). The dotted lines indicate the median 
survival. In addition, the number of patients at risk and of censored observations are provided for the follow-up period. 
 



 
Fig. 2B: Kaplan-Meier curves of biochemical recurrence (BCR)-free survival according to risk groups in the second external 
Validation set (PROCURE). Blue represents the low-risk group (0-5% BCR score), yellow represents the low-intermediate 
risk group (6-42%), grey represents the high-intermediate risk group (43-74%), and red represents the high-risk group (75-
100%). The p-value was measured using the log-rank test. The number of patients at risk and of censored observations are 
provided for the follow-up period. 
 

 

Cancer-specific Survival  

This study examined cancer-specific survival using a novel risk classification system in three cohorts: the 

CPCBN, PROCURE, and PLCO cohorts. In the CPCBN cohort, the novel score was a significant prognostic 

factor for cancer-specific mortality and tumor stage; in contrast, GG was not an independent prognostic 

factor (Supplementary Table S11). In the PROCURE Quebec Prostate Cancer Biobank (PROCURE cohort), 

the novel risk score was an independent prognostic factor, along with the nodal stage; in contrast, the tumor 

stage was insignificant (Supplementary Table S12). Supplementary Table S13 summarizes the results of the 
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Cox regression analyses of the PLCO cohort, further validating the independent prognostic value of the risk 

score for cancer-specific mortality using whole-slide images. 

 

In the CPCBN and PROCURE cohorts, the multivariate Cox regression model with novel risk groups fit 

well, similar to the full model. However, the model with GG fits the data poorly (Table 2). In the PLCO 

cohort, both the GG and risk groups fit poorly compared with the full model, and the difference in the 

goodness-of-fit between the model with GG and the model with risk groups was insignificant. No 

significant multicollinearity between variables was identified (VIF <2). The estimated power for BCR 

survival analysis in this study was determined to be ≥95% at an alpha level of 5% for each cohort. The 

Fine-Gray competing risk regression analyses further validated the independent prognostic value of  our 

novel risk groups for cancer-specific mortality on external validation sets (Supplementary Tables S14 – 

S16). 

 

The Kaplan-Meier curves for cancer-specific survival according to risk classification in the three external 

validation sets showed significant differences among the risk groups (Figs. 2C–E). Supplementary Table 

S17 summarizes cancer-specific survival rates across the three cohorts and shows a distinct separation of 

survival rates among the risk groups 10 or 15 years after RP. The low-risk group of the novel grading system 

had no PCa-related deaths in any of the three cohorts; in contrast, the GG in the current grading system 

included patients who died owing to PCa in two of the three cohorts.  

 

PLCO cohort analysis showed that the number of slides per case and its correlation with the risk score did 

not significantly affect the prognostic value (Supplementary Table S18). Additional information on survival 

probabilities, Kaplan-Meier curves for the GG, Gleason score groups, and the PCa pathological stage is 

provided in Supplementary Tables S19–S21 and Supplementary Figures S5–S8 for comparison. 

 



Table 2: The model reduction and the partial Likelihood Ratio (LR ) test revealed that a baseline model with the novel risk 
groups is statistically comparable to the full model to predict cancer-specific survival. In constrast, GG (Gleason score/ISUP 
grade groups) was not comparable to the full model. Akaike information criterion (AIC) and Bayesian information criterion 
(BIC) support this finding as well since the fit of a baseline model with the novel risk groups is better than the fit of a 
baseline model with GG. pT: pathologic tumor stage; pN: pathologic nodal stage. + pN was excluded due to non-signficance 
to prognose cancer-specific survival in the CPCBN external validation set. For PLCO external validation set, we used GS 
provided by the study in stead of GG and prostate pathologic stage (considers T, N and M stages) due to the study history. 
The best performing models are highlighted in bold. Higher AIC and BIC are associated with the worst model fitness.  * 
since both GS and risk groups were signficanlty inferior than the full model, we applied the non-nested partial likelihood 
ratio test to compare between GS Cox model and risk group Cox model; our risk group demonstrated non-inferiority to 
GS, indicating comparable goodness of fit (z = 1.091,  p = 0.138). No significant multicollinearity between variables was 
identified (VIF <2). 

Model 

Nested partial Likelihood Ratio 

Test, LR (p-value) AIC BIC 

1st external validation set (CPCBN) 

Baseline model + risk group + GG Reference (full model) 167.5161 169.6403 

Baseline model + risk group 1.560 (0.213) 167.07 168.4861 

Baseline model + GG 4.114 (0.036) 169.6098 171.0259 

Baseline model (pT) 7.557 (0.027) 171.0623 171.7703 

2nd external validation set (PROCURE) 

Baseline model + risk group + GG Reference (full model) 170.6459 174.824 

Baseline model + risk group 4.094 (1.2e-1) 172.7398 175.8733 

Baseline model + GG 10.056 (1.8e-3) 178.7017 181.8353 

Baseline model (pT + pN) 27.777 (6.8e-5) 194.4228 196.5119 

3rd external validation set (PLCO)* 

Baseline model + risk group + GS Reference (full model) 298.0581 301.8323 

Baseline model + risk group 14.849 (1e-4) 310.9075 313.4237 

Baseline model + GS 5.15 (0.023) 301.2158 303.732 

Baseline model (prostate pathologic stage) 26.769 (1.54e-06) 320.8274 322.0855 

 

 

 

 

 

 

 

 

 

 



 
Fig. 2C: Kaplan-Meier curves of cancer-specific survival according to the risk groups in the first external Validation set 
(CPCBN, Canada). The P-value was measured using the log-rank test. Blue represents the low-risk group (0-5% BCR 
score), yellow represents the low-intermediate risk group (6-42%), grey represents the high-intermediate risk group (43-
74%), and red represents the high-risk group (75-100%). The number of patients at risk and of censored observations are 
provided for the follow-up period. 
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Fig. 2D: Kaplan-Meier curves of cancer-specific survival according to risk groups in the second external Validation set 
(PROCURE, Canada). The p-value was measured using the log-rank test. Blue represents the low-risk group (0-5% 
biochemical recurrence score), yellow represents the low-intermediate risk group (6-42%), grey represents the high-
intermediate risk group (43-74%), and red represents the high-risk group (75-100%). The number of patients at risk and 
of censored observations are provided for the follow-up period. 
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Fig. 2E: Kaplan-Meier curve of cancer-specific survival according to risk groups in the third external Validation set (PLCO, 
U.S.). The p-value was measured using the log-rank test. Blue represents the low-risk group (0-5% BCR score), yellow 
represents the low-intermediate risk group (6-42%), grey represents the high-intermediate risk group (43-74%), and red 
represents the high-risk group (75-100%). The number of patients at risk and of censored observations are provided for 
the follow-up period. 
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Interpretability 

Table 3 shows the concordance between the five pathologists and novel risk classifications. This table 

summarizes the synergistic efforts between AI and pathologists in defining a novel grading system for PCa. 

Despite being completely blinded to the novel risk classification and clinicopathological information, we 

found a striking alignment between the pathologists and risk classification in sorting image clusters. Despite 

not relying on pattern proportions like the GG and the absent of significant collinearity between our novel 

risk group and GG, the image cluster representing the low-risk group included Gleason pattern 3 mostly; 

in contrast, the high-risk group included Gleason patterns 4 and 5, with Gleason pattern 3 being almost 

absent. The pathologists found a mixture of Gleason patterns 3 and 4 in the intermediate group, with a trend 

in favor of Gleason pattern 4 in the high-intermediate group. Fig. 3 exemplary illustrates the 

histopathological gradient for distortion of glandular architecture as well as the Supplementary section 

include information on accessing image clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3:  Image cluster assessment by pathologist in accordance with the BCR score risk stratification with decision 
explanation. Pathologist D weighted the heterogeneity definition to rank Cluster D and C, thereby resulting into the partial 
agreement.   

Pathologist Sorting 

agreement 

with AI 

Explanation 

Pathologist A Yes Cluster A: Dominant Gleason pattern 3 

Cluster B: Mixed Gleason pattern 3 and 4, cannot determine which pattern is dominant. 

Cluster C: Mixed Gleason pattern 3 and 4, but Gleason pattern 4 is dominant. 

Cluster D: Few Gleason pattern 3, mostly Gleason pattern 4 and/or 5. 

Pathologist B Yes Cluster A has the most favorable malignancy grade (mostly Gleason pattern 3), whereas 

Cluster D has the worst differentiation grade (hard to identify Gleason pattern 3, mostly 

Gleason pattern 4 and 5). Cannot determine a significant difference in pattern distribution 

in Cluster B and C, but it seems to me that C has more Gleason pattern 4. 

Pathologist C Yes There is a pattern trend in these clusters, likely driven by Gleason pattern 3. For example, 

Cluster A has mostly Gleason pattern 3 and Cluster D has mostly Gleason pattern 4 and 

5. This trend is, however, not clearly visible in cluster B and C (mixed Gleason pattern 3 

and 4). 

Pathologist D Partially Cluster A: Dominantly favorable Gleason pattern 3 

Cluster B: Mixed Gleason patterns 3 and 4 

Cluster D: Dominantly Gleason pattern 4 and 5 (Mostly Gleason score at least 8) 

Cluster C:  Mostly heterogenous prostate cancer constellation with dominance of Gleason 

pattern 4. 

Pathologist E Yes Cluster A: Dominant Gleason pattern 3. Rare occurrences of mucinous cribriform, 

glomeruloid patterns 

Cluster B: Mixed Gleason pattern 3 and 4, with rare occurrence of single cells (pattern 

5). When pattern 4 is present, it is mostly ill-defined, sometimes cribriform.  

Cluster C: Dominant pattern 4, with rare occurrences of pure pattern 3. Pattern 4 is often 

cribriform.  

Cluster D: Dominant patterns 4 and 5. 

 

 



 

Figure 3: we identified a clear histopathological gradient for distortion of glandular architecture (e.g., disappearance of 
organized glandular architecture) according to risk groups based on image patches. Example histology images were 
captured at 10x objective magnification (~330 × 330 µm). The supplementary section includes the access information to 
larger image sets representing these risk groups. 

 



Discussion 

In this study, we developed and externally validated a novel grading system for PCa that was superior to 

the existing grading systems. We demonstrated that AI could be a helpful tool for generating a well-

calibrated grading system interpretable by human experts, including risk stratification groups with distinct 

survival probabilities that enable communication with and between domain experts and between patients 

and experts to make clinical decisions7,19,20. A well-calibrated deep learning model alleviates the usual 

concerns of overconfidence and enables the interpretation of the model’s prediction as scores21,22. Lastly, 

risk stratification further enables the exploration of common histopathologic patterns by risk scores7,19,20. 

Previous AI efforts have focused on replicating grading systems using supervised learning. Bulten et al. 

reported a deep learning model trained with the semi-automatic region-level annotation technique and slide-

level annotations to show a Cohen’s quadratic kappa score (κquad) of 0.918 (95% CI 0.891–0.941)11. 

Similarly, Ström et al. developed an ensemble of deep learning models trained with automatically generated 

region-level annotations from pen marks and slide-level annotations, yielding a linear-weighted kappa score 

(κlin) of 0.8323. 

 

A recent study proposed a weakly supervised deep learning model that leveraged only the global Gleason 

score of whole-slide images during training to grade patch-pixel-level patterns and perform slide-level 

scoring accurately24. The authors reported an average improvement on Cohen’s quadratic kappa score (κquad) 

of approximately 18% compared to full supervision for the patch-level Gleason grading task24. Similarly, 

another study reported that the use of the AI-assisted method was associated with significant improvements 

in the concordance of PCa grading and quantification between pathologists: pathologists 1 and 2 had 90.1% 

agreement using the AI-assisted method vs. 84.0% agreement using the manual method (p < 0.001)25. 

 

Despite these results being promising, the current grading system still suffers from reader dependency, and 

any AI-based solution developed to improve the interrater agreement for tumor grading will apply to a 

closed network of human readers with associated social and cognitive biases. To address these integral 



notions of AI design, our grading system was calibrated with different risk groups independent of human 

readers. Our approach also overcomes the challenges of interpreting an AI-designed grading system as 

human readers can identify pattern trends in our grading system. Finally, our novel grading system 

accurately facilitated PCa grading at the clinically relevant case level using a limited number of 

representative PCa tissues (three to four small regions representing the index PCa on an RP specimen) or a 

fully representative slide from an RP specimen. 

 

Previous studies have explored the potential of digital biomarkers or AI-based Gleason grading systems for 

survival prediction and prognosis in PCa. For instance, a most recent nested case-control study developed 

a prognostic biomarker for BCR using ResNet-50D26 and a TMA cohort, and the time to recurrence was 

utilized to label the histology images27. Wulczyn et al. proposed an AI-based Gleason grading system for 

PCa-specific mortality based on Inception12-derived architecture28. Yamamoto et al. utilized deep 

autoencoders29 to extract key features that were then fed into a second machine learning model (regression 

and support vector machine30) to predict the BCR status for PCa at fixed follow-up time points (Year 1 and 

5)31. Other studies also utilized multimodal data (molecular feature and histology) for prognosis in different 

cancers32,33. Overall, these studies set the ground for further survival analyses using AI; however, they were 

limited by the post hoc explanation of their black box models that is not necessarily reflective of 

interpretable, clinically relevant well-validated algorithms34-36. 

 

One of the most important aspects to consider when developing tools for clinical decision-making is 

practicality and clinical utility. Our novel model was calibrated to predict 10-year BCR-free survival 

probability and facilitate model interpretation. It should also be noted that the standard prognostic factors 

for PCa are all obtained during diagnosis or treatment without accounting for any time information. 

Accordingly, we integrated this important aspect into our novel prediction system and selected model 

architectures for comparison based on recent surveys for medical imaging37,38 and the PANDA Challenge39 

for PCa. Similarly, because c-index and ROC curves are not ideal for comparing prognostic models, we 



utilized the partial LR test, AIC, and BIC to identify which model configuration fits better and provides a 

superior prognostic performance40. The novel prediction system presented in this study does not rely on 

Cox models to calculate risk scores and determine risk groups. In this study, Cox models were used only to 

evaluate the accuracy and clinical utility of the grading system. 

 

This study applied the Gleason grading system for nomology and ontology to describe the histopathological 

contents of each group as it is widely accepted as a communication terminology for histopathological 

changes in PCa among domain experts (including urologists, pathologists, and oncologists), despite their 

interrater limitations. Although there was some unsurprising overlap between our risk scores and the GG, 

the risk groups provided significantly different interpretations of the GG patterns. Furthermore, our analysis 

revealed no significant evidence of multicollinearity among various parameters, including Gleason grade 

(GG) and the risk groups. This suggests that the variables we considered in our study are independent and 

not significantly correlated with each other. 

 

Although our results are robust, and our novel grading system does not rely on GG nor pattern proportions, 

whether it can overcome sampling errors, tissue fragmentation, degradation, or artifacts caused by prostate 

biopsy and/or poor RP tissue quality is unknown. We did not evaluate our grading system on the biopsy 

materials for survival modeling as a sampling effect (evident from the increase in PCa on RP) and the 

effects of time or intermediate events (such as cancer progression) until treatment (such as RP) were 

difficult to control in the experimental setting. In contrast, these effects were easier to control with RP 

specimens, and it was previously demonstrated that TMA, corresponding biopsy samples and RP specimens 

were comparable to GG15,41. The selection strategy for whole-slide images (WSIs) or tissue microarray 

(TMA) sampling in the current cohorts was determined exclusively by the study organizers before the 

initiation of the current study. Thus, our strategy mitigated the observer bias by ensuring that data collectors 

were not involved with data analysis process of the current study. Although we did not have control over 

the WSI or TMA sampling and case selection process for the current study, our power analyses indicate that 



the sample size we have is adequate to execute our study. Moreover, the TMA cohorts were primarily 

designed for biomarker validation, specifically to assess the effectiveness of biomarkers in predicting or 

prognosing survival outcomes. The selection of TMA samples accordingly followed predetermined criteria 

set by the study organizers to ensure accurate representation and robust validation while mitigating the 

selection bias 15,41.  To mitigate potential bias from interobserver variability in labeling histopathological 

image clusters, we requested explanations from pathologists to better understand the factors influencing 

their decisions. This approach aimed to improve transparency and provide insights into the potential sources 

of bias in the interpretation of histopathological images. Finally, our AI-based grading system was not 

developed to detect PCa; therefore, additional models to detect PCa are required for a fully automated 

grading system. 

 

This study introduced and validated a novel grading system resulting from the synergy between AI and 

domain knowledge. Future research should focus on identifying the application boundaries of our novel 

grading system in a real-world setting, including its possible integration into existing nomograms used to 

predict prognosis and treatment response. 
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Online Methods 

Data 

Cohorts 

In this study, we adopted a study design that focused on the analysis of independent retrospective cohorts. 

The development cohort included 600 RP cases from two institutions in the CPCBN framework15,41. The 

first external validation set, the CPCBN cohort, included 889 RP cases from three different institutions 

within the CPCBN framework, anonymized to minimize bias and excluding the institutions used in the 

development set to avoid potential label leakage. The second cohort included 16 digital TMA scans of 897 

patients from the PROCURE cohort42,43. Lastly, the 1,502 H&E-stained whole-slide images from 861 RP 

cases in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial (NCT00339495; 



PLCO cohort) were used44,45. Only cores or representative slides from the RP index lesion were used to 

develop and validate the malignancy grading system for PCa. The Supplementary Methods details TMA 

construction and histological images of these cohorts as well as their exclusion and inclusion criteria. 

 

Clinicopathological Information  

Histological images of PCa, clinicopathological information, and longitudinal follow-up data were 

available for all cases. Clinicopathological data included age at diagnosis, preoperative prostate-specific 

antigen (PSA) measurements, RP TNM classification, and RP GG for all patients at the RP and TMA core 

sample levels. Tumor staging was based on the 2002 TNM classification46 and grading according to the 

2016 WHO/ISUP consensus47. All data were available from the corresponding framework and study trial. 

The clinicopathological information was obtained through a meticulous chart review process, involving the 

extraction of data and the data quality control from the electronic health records (EHR) of each participating 

hospital. 

 

Follow-up and Endpoints 

Most patients were regularly followed after RP to identify BCR, defined as two consecutive increases in 

serum PSA levels above 0.2 ng/mL, PSA persistence (failure to fall below 0.1 ng/mL), initiation of salvage 

or adjuvant treatment, and cancer-specific death. BCR status (non-BCR vs. BCR) and cancer-specific death 

status were documented during the follow-up period. Non-BCR cases or cancer survivors with incomplete 

follow-up duration were censored at the date of last follow-up for survival analyses. 

 

Model Development 

The development cohort was further divided into training and in-training validation sets, with the largest 

single-institution cohort used as the training set. Gleason patterns were utilized to ensure consistent 

histological appearance in circular cores with a diameter of approximately 0.6 mm. Gleason patterns 3 + 3 



and 4 + 4 were specifically used to evaluate homogeneous cores to ensure consistency in the histological 

appearance. These patterns were selected to determine the minimum and maximum ranges of tissue 

distortion within the circular cores. In contrast, cores with Gleason pattern 4 + 3 were considered to 

represent heterogeneous cores, indicating an intermediate stage of tissue distortion. The selection of 

Gleason pattern 3 cores was limited to cases without recurrence during follow-up to ensure a clean pattern. 

Images including Gleason pattern 5 were intentionally excluded from the training set. By removing pattern 

5 and 3+4 from the training set, we aimed to encourage the model to learn and rely on other distinguishing 

features that are indicative of different malignancy patterns other than the Gleason pattern system (quasi 

zero-shot learning). As a result, the model development process accounted for tissue appearance and 

distortion variations independent of the current Gleason grading system. 

 

The study employed neural architecture search using PlexusNET and grid search to find the best 

architecture model for BCR prediction48. ADAM optimization algorithm and cross-entropy loss function 

were used to train the models49. The optimal architecture was selected based on a 3-fold cross-validation 

performance. The resulting model was trained on the entire training set with early stopping and triangular 

cyclical learning rates applied to mitigate overfitting. Model performance was evaluated at the case level 

using confidence scores and metrics such as AUROC and c-index50,51. Tile-level predictions were 

aggregated to determine core- or slide-level predictions, and case-level predictions were estimated by 

averaging core- or slide-level predictions. The Supplementary Methods section provides more details about 

model development. 

 

Additional analyses were conducted using other neural network architectures and techniques, as described 

in the Supplementary Methods. The performance benefits of using different magnifications and survival 

modeling approaches were assessed. The risk classification model for BCR was constructed using the chi-

square automatic interaction detector (CHAID) algorithm52, with probabilities cutoffs identified on the 

development set and validated on external validation sets. 



 

Model Evaluation 

In the development and external validation cohorts, confidence scores for BCR (BCR scores) were 

generated for all cases. Prognostic classification and accuracy were measured using AUROC, Harrell’s C-

index, and generalized concordance probability. The goodness-of-fit was assessed using Akaike information 

criterion (AIC) and Bayesian information criterion (BIC)53-55. 

 

Calibration plots were created for external validation of the BCR model to evaluate its interpretability. 

Harrell’s “resampling model calibration” algorithm was applied to assess model calibration56,57. BCR 

predictions were compared to corresponding Kaplan-Meier survival estimates within 10 years. 

 

Univariate and multivariate weighted Cox regression analyses were conducted on external validation 

cohorts using Schemper et al.’s method to provide unbiased hazard ratio estimates, even in cases of non-

proportional hazards58. Parameters included age at diagnosis, surgical margin status, preoperative serum 

levels of PSA, pT stage, pN stage, GG, and BCR confidence scores. Parameters significant in the univariate 

analysis were included in the multivariate Cox regression analysis to identify independent prognostic 

factors for BCR. 

 

Cox regression models were used for cancer-specific survival to examine the prognostic value of the novel 

score/grading system, including GG, tumor stage, and the novel score/grading system. In addition to that, 

we performed the Fine-Gray competing risk regression analyses for cancer-specific mortality, while 

considering other competing causes of death reported in the death certificates. Kaplan-Meier survival 

estimates were used to approximate the BCR and cancer-specific survival probabilities for GG and the 

novel risk classification.  

 



Nested partial likelihood ratio tests were conducted to compare different Cox regression model 

configurations (only categorical variables) and determine the best model for prognosis59. The best-

performing grading system (novel grading vs. GG) was chosen based on the lowest changes in partial 

likelihood ratio and p-values. The AIC and BIC values were compared among the Cox regression models, 

with the best model having the lowest values. Pearson correlation coefficient was calculated to assess the 

correlation between the risk score and slide number. 

 

The variance inflation factor (VIF) was utilized to assess the multicollinearity level between the GG, novel 

grading, and tumor stage. Here, we built two logistic regression models for 10-year BCR and cancer-

specific death prediction. VIF below 2 indicates a negligible multicollinearity between these prediction 

variables.  

 

To ensure the robustness, reliability, and adequate sample size of our study, we conducted a power 

calculation for Cox proportional hazards regression. Specifically, we evaluated the statistical power of our 

analysis considering GG and risk score groups to prognose BCR or cancer-specific mortality using 

powerSurvEpi60. 

 

Human interpretability 

The first external validation set (CPCBN) images were clustered according to a risk classification model. 

Five experienced genitourinary pathologists with over 10 years of expertise were asked to review and sort 

randomly labeled image clusters based on tumor differentiation. Furthermore, these senior pathologists had 

to explain their decision in sorting the image clusters while no specific instruction on how to explain their 

decision was given. Pathologists were blinded to the corresponding clinicopathological and follow-up 

information to mitigate the recall bias and survivorship bias. Each pathologist was individually approached 

via email to perform the assigned task while the image clusters were randomly sorted before sharing them 

with each pathologist; no communication between pathologists specific to this task was permitted to avoid 



the confirmation bias. Time limitation was not set to execute the task. To assess the inter-rater agreement 

between a pathologist and our novel risk groups, we utilized a percent agreement based on the proportion 

of correctly labeled risk groups out of the total number of risk groups under the assumption that the 

probability for a random agreement in sorting the entire clustered images between a single pathologist and 

the novel risk classification model is <5% and therefore negligible. 

 

Software 

Model development and analyses were performed with Albumentations61, Keras 2.662, TensorFlow 2.663, 

Python™ 3.8, SPSS® 23 and the R statistical package system (R Foundation for Statistical Computing, 

Vienna, Austria). 
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Tables 

Table 1: The model reduction and the partial Likelihood Ratio (LR ) test revealed that a baseline model with the novel risk 

groups is statistically comparable to the full model to predict cancer-specific survival. In constrast, GG (Gleason score/ISUP 

grade groups) was not comparable to the full model. Akaike information criterion (AIC) and Bayesian information criterion 

(BIC) support this finding as well since the fit of a baseline model with the novel risk groups is better than the fit of a 

baseline model with GG. pT: pathologic tumor stage; pN: pathologic nodal stage. + pN was excluded due to non-signficance 

to prognose cancer-specific survival in the CPCBN external validation set. The best performing models are highlighted in 

bold. Higher AIC and BIC are associated with the worst model fitness. No significant multicollinearity between variables 

was identified (the Variance Inflation Factors,VIF, were below 2). 

Table 2: The model reduction and the partial Likelihood Ratio (LR ) test revealed that a baseline model with the novel risk 

groups is statistically comparable to the full model to predict cancer-specific survival. In constrast, GG (Gleason score/ISUP 

grade groups) was not comparable to the full model. Akaike information criterion (AIC) and Bayesian information criterion 

(BIC) support this finding as well since the fit of a baseline model with the novel risk groups is better than the fit of a 

baseline model with GG. pT: pathologic tumor stage; pN: pathologic nodal stage. + pN was excluded due to non-signficance 

to prognose cancer-specific survival in the CPCBN external validation set. For PLCO external validation set, we used GS 

provided by the study in stead of GG and prostate pathologic stage (considers T, N and M stages) due to the study history. 

The best performing models are highlighted in bold. Higher AIC and BIC are associated with the worst model fitness.  * 

since both GS and risk groups were signficanlty inferior than the full model, we applied the non-nested partial likelihood 

ratio test to compare between GS Cox model and risk group Cox model; our risk group demonstrated non-inferiority to 

GS, indicating comparable goodness of fit (z = 1.091,  p = 0.138). No significant multicollinearity between variables was 

identified (VIF <2). 

Table 3:  Image cluster assessment by pathologist in accordance with the BCR score risk stratification with decision 

explanation. Pathologist D weighted the heterogeneity definition to rank Cluster D and C, thereby resulting into the partial 

agreement. 

 



Figure legends 

Fig. 2: Slides from tissue microarrays (TMAs) with prostates samples from five sites were scanned, and the tissue regions 

were marked and extracted using QuPath (i.e., TMA slide image). We then tiled each TMA core image into patches labeled 

by biochemical recurrence (BCR) status to develop our BCR model. We estimated the average BCR scores for each patient 

and applied survival modeling to introduce our novel risk-based grading for prostate cancer. The development set consisted 

of 600 patients, whereas the international external validation sets included three radical prostatectomy cohorts (CPCBN, 

PROCURE, and PLCO). The cohort description for all data sets included in this study can be obtained from Supplementary 

Tables S1-S3. PLCO: The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial.  The endpoints we are 

shown in the black box. CSS: Cancer-specific survival. We emphasize that PC regions were manually demarcated on whole 

slide images following the instruction given by a study pathologist. 

Fig. 2: Kaplan-Meier curves of biochemical recurrence (BCR)-free survival according to the risk groups in (A) the first 

external Validation set (CPCBN, Canada) and (B) the second external Validation set (PROCURE). In addition to that, the 

figure includes Kaplan-Meier curves of cancer-specific survival according to the risk groups in (C) the first external 

Validation set (CPCBN, Canada), (D) the second external Validation set (PROCURE) and (E) the third external validation 

set (PLCO). P-value was measured using the log-rank test. Blue represents the low-risk group (0-5% BCR score), yellow 

represents the low-intermediate risk group (6-42%), grey represents the high-intermediate risk group (43-74%), and red 

represents the high-risk group (75-100%). The dotted lines indicate the median survival. In addition, the number of patients 

at risk and of censored observations are provided for the follow-up period. 

 

Fig. 3: we identified a clear histopathological gradient for distortion of glandular architecture (e.g., disappearance of 

organized glandular architecture) according to risk groups based on image patches. Example histology images were 

captured at 10x objective magnification (~330 × 330 µm). The supplementary section includes the access information to 

larger image sets representing these risk groups. 

 


